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Abstract—The synthesis of fluorous-tethered amine bases is described. These novel fluorous-tethered reagents promote reactions,
remove acidic by-products, and scavenge electrophiles. They are readily separated from the reaction mixture by solid phase
extraction on a novel mixed sorbent SPE (SCX/fluorous silica gel) delivering products in high yields and purities. © 2002 Elsevier
Science Ltd. All rights reserved.

In recent Letters,1 our laboratory, inspired by the work
of Curran,2 reported on the application of fluorous-
tethered compounds as scavengers and reagents for
both organic and parallel synthesis. The fluorous-teth-
ered compounds were rapidly separated from the
desired products by solid phase extraction (SPE) on
fluorous silica gel cartridges referred to as Fluo-
roFlash™ SPE columns.3 At the time of these first
disclosures, we were employing resin-bound amine
bases in our reaction schemes as we did not have
fluorous-tethered equivalents. We now report the syn-
thesis and applications of a diverse set of fluorous-teth-
ered amine bases for organic and parallel synthesis that
avoid the diminished kinetics of biphasic, resin-medi-
ated reactions.

Since resin-bound amine bases are typically attached to
the resin by a methylene spacer to the cross-linked
polystyrene core (Fig. 1), we first directed our synthetic
efforts at a fluorous-tethered benzylic amine equivalent.
Reductive amination of commercial aldehyde 14 with
morpholine (Scheme 1) in the presence of MP-CNBH3,
followed by simple filtration afforded the desired
fluorous-tethered NMM analog 2 in excellent yield and
purity.5

Several other fluorous-tethered benzylic amines were
prepared including piperidine and triethylamine
analogs, all of which were white crystalline solids. This

route provided access to several valuable reagents, but
we envisioned the need for other amine bases whose
synthesis could not be achieved via this route.

Based on the commercial availability of a large number
of functionalized diamines and an F15 fluorous-tethered
acid chloride,6 we assembled a ‘toolkit’ of fluorous-teth-
ered amine bases by simple acylation chemistry as
shown in Table 1. By this method, we were able to
access fluorous-tethered triethyl amine, TEA, (entry 1),
diisopropylethyl amine, DIEA, (entry 2), imidazole,
Imid, (entry 3), pyridine, Pyr, (entry 4), N-methyl mor-
pholine, NMM, (entry 5) and a trisamine congener,
Tris, (entry 6) in excellent isolated yields as white
crystalline solids.7 Table 1 also lists the shorthand
abbreviation for each reagent that will be used through-
out the remainder of this report.

Figure 1. Generic resin-bound amine base.

Scheme 1.
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Table 1. Synthesis of fluorous-tethered amine bases

With two distinct classes of fluorous-tethered amine
bases in hand, we next focused our attention on explor-
ing their utility for organic and parallel synthesis. As
anticipated, the benzylic fluorous-tethered amines from
Scheme 1 sequestered HCl generated from acylation
and sulfonylation reactions and promoted urea forma-
tion. For example, amine 3 was exposed to excess
sulfonyl chloride 4 and 2 for 2 hours (Scheme 2). Excess
electrophile was quenched by the addition of fluorous-
tethered amine 5 for 1 hour.1a It was anticipated that
both fluorous-tethered reagents could be removed via
FluoroFlash™ SPE to provide the sulfonamide 6 in
high yield and purity; however, �15% of 2 co-eluted
with 6 while 5 was retained. Puzzled by this result, we

moved on to evaluate our non-benzylic congeners
(Table 1). Application of these new reagents in the
reaction sequence to deliver sulfonamide 6 proved
problematic, as found with 2 (Scheme 3). Upon stan-
dard FluoroFlash™ SPE purification, with the silica gel
transfer column in place, we were surprised to find that
both F-NMM and F-Tris were not completely retained
on the FluoroFlash™ SPE cartridge under typical 20%
aqueous methanol elution.8 In this instance, �60% of
F-Tris and �25% of F-NMM passed through the SPE
column with the first 5 mL collected; however, the
majority of fluorous material was retained. This con-
tamination proved to be problematic with all of the
fluorous-tethered amine bases depicted in Table 1. Our
experience and that of others in the field suggested that
the ability of fluorous SPE to retain fluorous-tethered
molecules was general, i.e. independent of the function-
ality attached to the fluorous chains.9 In light of these
results, we now know that appended basic and polar
groups can override the fluorophilic interactions
between fluorous-tethered materials and fluorous silica
gel, even when eluted with fluorophobic solvent
systems.

We were at a loss to explain why reagents such as 5 are
retained on FluoroFlash™ SPE while reagents such as
2 and those in Table 1 are not. Fortunately, LCMS
analysis of representative fluorous-tethered reagentsScheme 2.
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Scheme 3.

After a thorough study of the matter, we have devel-
oped a general guide for the purification of fluorous-
tethered reagents based on LCMS retention time (Table
2). Key to the development of this guide was the
generation of a ‘mixed sorbent’ SPE cartridge wherein
the silica gel transfer column is replaced with an ion
exchange column resulting in a mixed ion exchange-
fluorous SPE column.11

In accord with our guidelines, fluorous-tethered
reagents that possess retention times >3.5 minutes can
be separated from non-fluorous materials by standard
FluoroFlash™ SPE under the pull of a −5 psi vacuum
as detailed previously.1–3 In borderline cases (retention
times between 2.9 and 3.4 minutes), clean products are
obtained with FluoroFlash™ SPE except gravity filtra-
tion is used in lieu of the normal −5 psi vacuum.8

Indeed, allowing gravity filtration for the reaction in
Scheme 2 afforded 6 in 88% yield and >95% purity.12

As indicated in Table 2, by application of the ‘mixed
sorbent’ SPE protocol,11 the sequence depicted in
Scheme 3 now delivers sulfonamide 6 in 89% yield and
>95% purity.12 The mixed sorbent protocol retains all
of the fluorous materials while allowing the organics to
elute cleanly even under the pull of a −5 psi vacuum.
This new protocol is scaleable and has applications for
both parallel and organic synthesis. For instance, larger
FluoroFlash™ SPE (5–10 g) and ion-exchange columns
(1–5 g) can be used to deliver products in the 0.1–1
mmol range with excellent purities. Additional exam-
ples of this protocol for synthesis are illustrated in
Scheme 4. In the event, p-bromobenzyl alcohol 7 was
treated with TBDMSCl in the presence of F-Imid for 1
hour. After this time, fluorous-tethered alcohol 8 was
added to scavenge the excess TBDMSCl. After 45
minutes, the crude reaction was applied to a mixed
sorbent (SCX/FluoroFlash™) SPE column and eluted
with 15% aqueous methanol to provide the protected
derivative 9 in 92% yield and >98% purity.13 In a
similar fashion, amine 10 was treated with benzoyl
chloride and F-NMM for 1 hour. Then, F-Tris was
added as a 2.0 M THF solution. Following 30 minutes
of reaction time, the crude reaction was applied to a
mixed sorbent (SCX/FluoroFlash™) SPE column and
eluted with 15% aqueous methanol to provide amide 11
in 96% yield and >98% purity.14

shed light on the issue.10 As seen in Fig. 2, the retention
time dramatically decreases as the polarity of pendant
groups and the distance from the fluorous-chain
increases. Of interest, the majority of fluorous-tethered
reagents reported to date are non-polar entities such as
triarylphosphines, trialkylstannanes and bis-fluorous-
tethered DEAD. These materials have retention times
of >4.1 minutes on our instrument and afford excellent
separation by FluoroFlash™ SPE.9 The fluorous-teth-
ered scavengers that were recently reported1 have
LCMS retention times >3.5 minutes, despite the pres-
ence of basic and polar functionalities (Fig. 3). Note,
these groups are appended either directly to the
fluorous chain or with a 1 or 2 carbon atom spacer.
Similarly, these materials are readily separated by appli-
cation of FluoroFlash™ SPE. Our new fluorous-teth-
ered amine bases elute between 3.4 and 2.2 minutes and
are not completely retained under standard Fluo-
roFlash™ SPE.8 Moreover, the basic moieties in these
reagents are several atoms removed from the fluorous
tether and, as in the case of the reagents in Table 1,
contain an additional polar amide linkage.

Figure 2. Retention times of fluorous-tethered reagents.

Table 2. LCMS retention time guide for SPE

LCMS retention Purification method
timea

�3.5 min Silica transfer column/FluoroFlash™ SPE −5
psi vacuum
Silica transfer column/FluoroFlash™ SPE2.9–3.4 min
gravity filtration

�2.8 min Mixed sorbent SPEb, ion exchange
SPE/FluoroFlash™ SPE

a 3.0×50 mm C18 J-Sphere80, 4 micron column; 5–95% MeCN:H2O,
4 min run time.

b Ion exchange SPE columns: SCX or SAX (1 g cartridge).Figure 3.



C. W. Lindsley et al. / Tetrahedron Letters 43 (2002) 6319–63236322

Scheme 4.

In summary, the synthesis and application of novel
fluorous-tethered amine bases is described. These
reagents have the utility of their resin-bound congeners
yet provide homogeneous reactions with solution phase
kinetics. FluoroFlash™ SPE alone is not sufficient as a
general method for the separation of fluorous-tagged
and non-fluorous-tagged materials when polar, basic
functionalities are appended several atoms away from
the fluorous chain. A set of guidelines for fluorous SPE
purification based on LCMS retention time of the
fluorous-tethered reagents was developed along with a
‘mixed sorbent’ SPE strategy for rapid parallel purifica-
tion of reaction systems that employ fluorous-tethered
amine bases. Additional investigations into the scope
and limitations of fluorous technology for synthesis are
in progress.
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